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Abstract It is shown that given a fullerene F with the number of vertices n divisible
by 4, and such that no two pentagons in F share an edge, the corresponding leapfrog
fullerene Le(F) contains a long cycle of length 3n − 6 missing out only one
hexagon.

Keywords Graph · Fullerene graph · Cyclic edge-connectivity · Perfect matchings ·
Leapfrog operation

1 Introductory remarks

Fullerenes, discovered in 1985, are all-carbon ‘sphere’-shaped molecules with triva-
lent polyhedral skeletons, having 12 pentagonal faces and all other hexagonal faces.
This important class of molecules is a basis of thousands of patents for a broad range of
pharmaceutical, electronic and other commercial applications [1,2]. The most stable
fullerene is Buckminsterfullerene that consists of 60 carbon atoms. It was obtained for
the first time in the graphite vaporization experiment [3] and spectroscopic evidences
of his structure are given in [4]. R. F. Curl, H. Kroto and R. E. Smalley received the
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Nobel Prize for this discovery. From a mathematical point of view, fullerenes corre-
spond to 3-regular and 3-edge-connected planar graphs which have, in view of the well
known Euler formula, 12 pentagons and the remaining faces are hexagons. (A graph
is 3-edge-connected if three edges are needed to be removed in order to disconnect
the graph.) It is therefore not surprising that many questions about the chemistry of
fullerenes together with the methods used to answer these questions find their natural
environment in a graph-theoretic context.

One of the many open problems with regards to fullerenes concerns the number
of Kekulé structures in a fullerene, the so called Kekulé number [5–15]. Cast in a
graph-theoretic language, the Kekulé number corresponds to the number of perfect
matchings in a fullerene. In [10] it was shown that a fullerene of order m has at least
(m+2)/2 perfect matchings. This result was further improved in [5] to a lower bound
�3(m + 2)/4�. Also, it was very recently shown in [9] that for all sufficiently large m
there is a fullerene of order m for which the number of perfect matchings is exponential
in m.

The leapfrog fullerene Le(F) is obtained from a fullerene F by performing the so
called tripling (leapfrog transformation) which consists in the truncation of the dual
Du(F)of F . Hence, Le(F) = Trun(Du(F)). We show that given a fullerene F with the
number of vertices n divisible by 4, and obeying IPR (isolated pentagon rule, that is,
no two pentagons share an edge), the corresponding leapfrog fullerene Le(F) constains
at least 2n decompositions to a long cycle of length 3n – 6 and a hexagon, proved in
Theorem 3.5, the proof of which relies on a classical result of Payan and Sakarovitch
about induced trees in trivalent graphs [16].

In the next section we give some basic graph-theoretic definitions and notations
and prove a result about cyclical edge-connectivity in certain graphs obtained by a
small modification of fullerenes. This result together with the above mentioned result
of Payan and Sakarovitch is vital in the proof of our main result.

2 Graph-theoretic background

Throughout this paper graphs are finite, undirected and connected, unless specified
otherwise. For notations and definitions not defined here we refer the reader to [17].
For adjacent vertices x and y in X , we write x ∼ y and denote the corresponding edge
by xy. Given a graph X we let V (X) and E(X) be the vertex set and the edge set of X ,
respectively. If x ∈ V (X) then N (x) denotes the neighbors set of x and Ni (x) denotes
the set of vertices that are at distance i > 1 from x . If S ⊆ V (X), then Sc = V (X)\S
denotes the complement of S and the graph induced on S is denoted by X [S].

Given a graph Xwe let H(X) denote the multigraph obtained from X by sup-
pressing its vertices of degree 2 (that is, by contracting one of the incident edges).
Further, if |V (X)| ≥ 10 and x ∈ V (X), let Rx (X) denote the graph H(X [({x} ∪
N (x))c]). An example is shown in Fig. 1.

A graph is said to be k-connected if k edges need to be removed to disconnect the
graph. A fullerene graph (in short a fullerene) is a trivalent spherical map, and thus a
2-connected cubic planar graph, all of whose faces are pentagons and hexagons. By
Euler formula there are exactly 12 faces of size 5 and all other faces of size 6. Further,
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x

Fig. 1 The dodecahedron X on the left and its Rx (X) on the right

Fig. 2 The pentacap

it is easily seen that a fullerene must necessarily be 3-connected and that its smallest
cycle is of length 5 (see [18,19]).

A graph is said to be cyclically k-edge-connected, if at least k edges must be removed
to disconnect it into two components, each containing a cycle. The set of k edges whose
elimination disconnect a graph into two components, each containing a cycle is called
a cyclic-k-edge cutset and moreover, it is called a trivial cyclic-k-cutset if at least one of
the resulting two components induces a single k-cycle. An edge from a cyclic-k-cutset
is called cyclic-cutedge.

Clearly, in any fullerene F the cyclic connectivity cannot exceed 5, since by deleting
the five edges connecting a pentagonal face, two components each containing a cycle
are obtained. In fact, as was proved by Došlič [19, Theorem 2], the cyclic connectivity
of a fullerene is precisely 5. However, a somewhat more detailed information about
cyclic-5-cutset in fullerenes, taken from [20, Theorem 1], will be also needed.

The pentacap is a planar graph on 15 vertices with 7 faces of which one is a 10-gon
and six are pentagons (see Fig. 2). Observe that the dodecahedron is obtained as a
union of two pentacaps, by identifying the 10 vertices on the outer ring of the two
pentacaps.

Proposition 2.1 [20, Theorem 1] Let F be a fullerene admitting a nontrivial cyclic-5-
cutset. Then F contains a pentacap, more precisely, it contains two disjoint pentacaps.
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Fig. 3 All possibilities for a local structure of the fullerene F

Note that, since the order of any fullerene F is at least 20, the graph Rx (F) is well
defined for every vertex x ∈ V (F) and that, moreover, |V(Rx(F))| = |V(F)| − 10 =
n − 10. Further, if the order of F is divisible by 4, the order of Rx (F) is congruent to
2 modulo 4.

The next lemma, showing that with the transformation F → Rx (F) the cyclic
connectivity drops by at most 1, will prove crucial for our main result.

Lemma 2.2 Let F be a fullerene of order divisible by 4 and obeying IPR. Then for
every vertex x ∈ V (F) the graph Rx (F) is cyclically 4-connected.

Proof Let x ∈ V (F). Clearly, in view of our assumptions, there are precisely six pos-
sibilities for the local structure surrounding the vertex x , shown in Fig. 3. Therefore,
there are also six possibilities for the local structure of Rx (F), depending on the type
of vertex x, again shown in Fig. 4. We shall do the analysis for the case Y1 in detail,
the analysis in the other five cases is done in a similar way.

Therefore, let x ∈ V (F) be such that the local structure of Rx (F) is Y1 (see Fig. 4).
Let Q = {x} ∪ N (x) ∪ N2(x) denote the set of vertices that were deleted from F
(the black vertices in Fig. 4). Observe that each edge of Rx (F) lies on exactly two
faces and that exactly one 11-gonal face C exists in Rx (F). The sizes of other faces of
Rx (F) depend on the sizes of the faces of F adjacent to the faces shown in the second
picture of Fig. 3. Moreover, as we are assuming that F has no adjacent pentagons,
one can easily see that Rx (F) has no triangles and that for any pair of edges on the
11-gonal face C , this face is the only face of Rx (F) containing both of these edges.

Suppose that Rx (F) is not cyclically 4-edge-connected. Then there exists a
cyclic-k-cutset T of E(Rx (F)) where k ≤ 3. By deleting the edges in T the graph
Rx (F) decomposes into two components, say R and R′, each containing a cycle. Since
one endvertex of any edge in T belongs to R and the other endvertex belongs to R′,
one can easily see that there must be an even number of edges from T lying on C . It
follows that either no edge or two edges from T lie on C .
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Fig. 4 All possibilities for a local structure of the graph Rx (F)

If no of edge in T lies on C , then all the vertices of C belong to the same compo-
nent, say R. But then the deletion of the edges in T also separates the fullerene F into
two components, each containing a cycle, contradicting the fact that F is cyclically
5-edge-connected.

We may now assume that there are exactly two edges in T , say e and e′, that lie on
C . Two cases need to be considered.
Case 1. Let e and e′ have a common vertex.

Therefore, e = yz and e′ = y′z for some y, y′, z ∈ V (C). Then without loss of
generality we may assume that z ∈ Rand y, y′ ∈ R′. However, depending on whether
or not e and e′ are also the edges of F three possibilities need to be considered.
Subcase 1.1. Suppose that both e and e′ are edges of F . Then y, y′ and z are clearly
the three bottom left or the three bottom right vertices in the Y1 local structure of Fig.
4. However, one can easily see that the sets R and R ∪ Q are disjoint subsets of F ,
each containing a cycle, that are seperated with the edges from T , a contradiction as
F is cyclically 5-edge connected.
Subcase 1.2. Suppose that neither e nor e′ belongs to E(F) and let w,w′ ∈ N2(x)

be such that w ∈ N (y) ∩ N (z) and w′ ∈ N (y′) ∩ N (z) (black vertices in Fig. 4).
Then the sets R and R ∪ Q are disjoint subsets of F , each containing a cycle, that are
separated by wz, w′z and T . But since e and e′ are not in E(F), the sets R and R ∪ Q
are separated with less than five edges, again a contradiction.
Subcase 1.3. Let e = yz be an edge of F and let e′ = y′z /∈ E(F). Then there exists
w′ ∈ N2(x) such that w′ ∈ N (y′) ∩ N (z). But then the sets R and R ∪ Q are disjoint
subsets of F , each containing a cycle, that are separated by w′z and T. But since e′ is
not in E(F), the sets R and R ∪ Q are separated by less then five edges, a contradiction.
Case 2. Let e and e′ have no common vertex.

123



J Math Chem (2009) 45:406–416 411

e e′ e

e′

e

e′

e

e′

e e′ e

e′

e

e′

Fig. 5 The possibilities for cyclic-cutedges and e′ in Rx (F) when e and e′ do not share an endvertex and
none of them is an edge of F with the corresponding cyclic-cutedges of F
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Fig. 6 The possibilities for cyclic-cutedges e and e′ in Rx (F) if e ∈ E(F), e′ /∈ E(F) and the distance
between endvertices of e and e′ on C is 2 or 3 with the corresponding cyclic-cutedges of F

Also in this case, depending on whether or not e and e′ belong to F , three possibil-
ities need to be considered.
Subcase 2.1. Suppose that neither e nor e′ is an edge of F . Then it is clearly sufficient
to consider the seven possibilities shown in Fig. 5 where vertices from one of the two
sets R and R′ are colored white and vertices from the other set are colored black.
Moreover, adding vertices of Q to R and R′ as shown in Fig. 5, we deduce that in all
these possibilities there exists a cyclic-k-cutset of cardinality less then 5 in F (since e
and e′ are not in E(F)), a contradiction.
Subcase 2.2. Let e be an edge of F and let e′ /∈ E(F). If the endvertices of e and e′
on 11-gonal face C are at most distance 3 apart, then it is clearly sufficient to consider
the seven possibilities shown in Fig. 6. Similarlly as above one can see that in all
these local structures there exists a cyclic-k-cutset in F of cardinality less than 5, a
contradiction.
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Fig. 7 The possibilities for cyclic-cutedges e and e′ in Rx (F) if e ∈ E(F), e′ /∈ E(F) and the endvertices
of e and e′ are at least distance 4 apart on C with the corresponding cyclic-cutedges of F

e

e′

e

e′
e

e′

ee′
ee′

Fig. 8 The possibilities for cyclic-cutedges e and e′ in Rx (F) if e, e′ ∈ E(F) and they do not share an
endvertex with the corresponding cyclic-cutedges of F

Let now e and e′ on 11-gonal face C be at least distance 4 apart. Clearly, there exist
two different faces Band B′ of Rx (F) adjacent to C of which the first contains e and
the second contains e′. If these two faces are disjoint (they do not have a common
edge) then in view of the fact that each cycle in Rx (F) contains an even number of
edges from T, beside the edges e and e′, there exist at least two more edges in T, and so
|T | ≥ 4, a contradiction. Therefore we may assume that B and B′ share an edge, say
e′′. Clearly it is sufficient to consider the five possibilities shown in Fig. 7. Moreover,
in all these possibilities (see Fig. 7) there exists a cyclic-5-cutset in F . Therefore,
Proposition 2.1 implies that either this cyclic-5-cutset is trivial or F contains the pen-
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tacap. Furthermore, as e and e′ are at least distance 4 apart on C, one can easily see
that the cyclic-cutedges in Fig. 7 together with e′′ cannot separate a pentagon of F .
Therefore, F contains the pentacap, a contradiction.
Subcase 2.3. Let both e and e′ be edges of F . Observe, that it is sufficient to consider
the five possibilities shown in Fig. 8. One can easily see that in all of these possi-
bilities for the local structure there exists a cyclic-5-cutset of F . As in Subcase 2.2,
Proposition 2.1 implies that in all these cases F contains the pentacap, a contradiction.
This completes the proof of Lemma 2.2 �

Remark Note that for a fullerene F in which there exist adjacent pentagons the graph
Rx (F) may not be cyclically 4-edge-connected (see also Fig. 1).

3 The leapfrog fullerenes

A few additional graph-theoretic concepts are needed before we can embark on the
proof of our main theorem. We say that, given a graph (or more generally a loopless
multigraph) X, a subset S of V(X) is cyclically stable if the induced subgraph X[S] is
acyclic (a forest). The following two results are due to Payan and Sakarovitch [16].
The first one may be deduced from [16, Théoreme 5] whereas the second one is a
rephrasing of [16, Théoreme 6]. They will be used in the proof of Lemma 3.3 below.

Proposition 3.1 [16, Théoreme 5] Let X be a cyclically 4-connected cubic graph of
order n, and let S be a maximum cyclically stable subset of V(X). Then the following
hold.

1. If n ≡ 2(mod4) then |S| = (3n-2)/4, and X[S] is a tree and Sc is an independent
set of vertices;

2. If n ≡ 0(mod4) then |S| = (3n-4)/4, and either X[S] is a tree and Sc induces a
graph with a single edge, or X[S] has two components and Sc is an independent
set of vertices.

Proposition 3.2 [16, Théoreme] Let X be a cyclically 4-edge-connected cubic graph
and let x ∈ V (X). Then there exists a maximum cyclically stable subset S of V(X)
such that x /∈ S.

Lemma 3.3 Let F be a fullerene of order divisible by 4 obeying IPR and let x ∈ V (X).
Then there exists a decomposition of V(F) into two subsets, the first of which induces a
tree and an isolated vertex x, and the second of which is an independent set of vertices.
Furthermore, for every vertex of F there exist at least two such decompositions.

Proof Since the order of F is divisible by 4, the graph Rx (F) is of order n − 10 ≡
2(mod4).

Let N (x) = {xi |i ∈ Z3} be the neighborhood of x and let N (xi ) = {x, y j
i | j ∈ Z2}

for i ∈ Z3. Since, by Lemma 2.2, Rx (F) is cyclically 4-edge connected, Proposition
3.1 implies that there exists a maximum cyclically stable subset S of V (Rx (F)) such
that Rx (F)[S] is a tree and Sc is an independent set of vertices. But then one can easily
see that the complement of the set S = S ∪ {y j

i |i ∈ Z3, j ∈ Z2} ∪ {x} in F is an
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Fig. 9 The fullerene C20 is a
retro-leapfrog fullerene of C60

independent set of vertices and that F[S̄] is a union of a tree and an isolated vertex x .
Namely, if the graph F[S ∪ {y j

i }], for some i ∈ Z3 and j ∈ Z2, contains a cycle then
it follows that Rx (F)[S] contains a cycle.

By Proposition 3.1 the set S is of cardinality |S| = (3n − 32)/4 and so there clearly
exists a vertex v of Rx (F) contained in S. Moreover, Proposition 3.2 implies that
there also exists a maximum cyclically stable subset S′of V (Rx (F)) such that v is not
contained in S′. Using the some arguments as above, we see that the subgraph of F
induced by the set S̄′ = S′ ∪ {y j

i |i ∈ Z3, j ∈ Z2} ∪ {x} is a union of a tree and an
isolated vertex x and that the complement of S̄′ is an independent set of vertices. This
completes the proof of Lemma 3.3. �

In the proof of the next theorem we will use the following observation, first made
in [21]. Let X = Le(F) be a leapfrog fullerene of a fullerene F . Then F , the so called
retro-leapfrog fullerene of X [22,23], is precisely the graph whose vertex set consists
of all non-cap hexagons of X (the new hexagons added to the faces of F), with two
hexagons adjacent if they share an edge in X. For example, with the leapfrog operation
the dodecahedron fullerene C20 gives rise to the fullerene C60. Conversely, if we form
the graph whose vertex set consists of all hexagons of C60 with two hexagons adjacent
if they share an edge in C60 we get the fullerene C20 (see also Fig. 9).

In the following example we illustrate the method of the proof of Theorem 3.5

Example 3.4 In the right-hand side picture of Fig. 10 we show a disjoint union of a
tree of hexagons and a hexagonal face in the leapfrog fullerene X of the fullerene C60,
whose boundary is a union of a 174-cycle and a 6-cycle. The left-hand side picture
shows this same tree in the retro-leapfrog fullerene of X.

Theorem 3.5 Let F be a fullerene of order n divisible by 4 and obeying IPR, and let
Le(F) be the corresponding leapfrog fullerene of order 3n. Then there exist at least
2n decompositions of V(Le(F)) into two disjoint sets C and C′ such that |C| = 6,
|C′| = 3n-6, Le(F)[C] is a 6-cycle and Le(F)[C′] contains a (3n-6)-cycle.
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Fig. 10 A disjoint union of a tree of faces and a hexagonal face in the leapfrog fullerene of C60

Proof Let x ∈ V (F). Since F is a fullerene of order n ≡ 0(mod4) such that no two
pentagons are adjacent, Lemma 3.3 implies that there exist at least two decompositions
of V(F) into two subsets, the first of which induces a union of a tree T and an isolated
vertex x , and the second of which is an independent set of vertices. As demonstrated
in Example 3.4, the vertex x ∈ V (F) corresponds to unique hexagon in Le(F) and
so it gives rise to a 6-cycle of Le(F). Moreover, the tree T gives rise to a topologi-
cal disk in Le(F), the boundary of which is a (simple) cycle passing through all but
the six vertices which correspond to x . Since there exist n vertices in F , the result
follows. �

4 Concluding remarks

It is shown that given a fullerene F with the number of vertices n divisible by 4
and obeying IPR the corresponding leapfrog fullerene Le(F) of F contains 2-factor
consisting of a hexagon, resulting from the leapfrog operation, and a long cycle of
length 3n − 6, which is the boundary of a tree of faces all of which are hexagons
resulting from the leapfrog operation. It would be interesting to see if the methods
applied here could also be used for other types of 2-factors in Le(F) as well as for
fullerenes arising from other types of operations performed on fullerenes, such as for
example the quadrupling and the septupline operations.
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Inf. Comput. Sci. 43, 609 (2003)
7. K.M. Rogers, P.W. Fowler, J. Chem. Soc., Perkin Trans. 2, 18 (2001)
8. W. Yan, F. Zhang, Adv. Appl. Math. 32, 175 (2004)
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